

An Arithmetic sequence is a sequence where the difference between consecutive numbers terms remains constant i.e.
In the sequence: $5 ; 9 ; 13 ; 17 ; 21 ; \ldots$

$$
\begin{aligned}
& \text { We see that } \boldsymbol{a}=\mathbf{5} \text { and } \boldsymbol{d}=\mathbf{4} \\
& \boldsymbol{T}_{\mathbf{1}}=5=\quad \boldsymbol{a} \\
& \boldsymbol{T}_{2}=9=5+4=\quad \boldsymbol{a}+\boldsymbol{d} \\
& \boldsymbol{T}_{\mathbf{3}}=13=5+2(4)=\boldsymbol{a}+\mathbf{2 d} \\
& \boldsymbol{T}_{\mathbf{4}}=17=5+3(4)=\boldsymbol{a}+\mathbf{3} \boldsymbol{d}
\end{aligned}
$$

The General Term $\boldsymbol{T}_{\boldsymbol{n}}$
Is given by
$T_{n}=a+(n-1) d$

Example 1:
Given the sequence: $2 ; 5 ; 8 ; \ldots$
a) Determine the general term of the sequence.
b) Use the general rule to determine the $40^{\text {th }}$ term.
c) Which term in the pattern will be equal to 2012 .

Solution: Constant difference: $\boldsymbol{d}=\boldsymbol{T}_{2}-\boldsymbol{T}_{1}=5-2=3$

$$
a=T_{1}=2
$$

$T_{n}=a+(n-1) d$
$=2+(n-1) 3$
$=2+3 n-3$

$$
=3 n-1 \quad \therefore T_{n}=3 n-1
$$

$T_{n}=3 n-1$
$\therefore T_{40}=3(40)-1$
$T_{40}=119$
The position of the term is 40 . Therefore, $n=40$
$T_{n}=2012$
$\therefore T_{n}=3 n-1=2012 \longleftarrow$ The value of the term is 2012. Therefore, $n=671$
$3 n=2012+1$
$3 n=2013$
$n=671$
\therefore term number 671 of the sequence is equal to 2012

Example 2: Find the number of terms in the arithmetic sequence $-2 ;-6 ;-10 ; \ldots ;-150$	Solution: $\begin{aligned} & \boldsymbol{d}=-6-(-2)=-\mathbf{4} \\ & T_{n}=a+(n-1) d \\ & T_{n}=-2+(n-1)(-4) \\ & T_{n}=-4 n+2 \\ & T_{n}=-4 n+2=-\mathbf{1 5 0} \\ & \therefore-4 n=-152 \\ & \therefore n=38 \end{aligned}$ There is 38 terms Constant difference: $\boldsymbol{d}=\mathbf{1 0}$ $T_{4}=39$	Example 3: Determine the first three terms of an arithmetic sequence if the constant difference is 10 and the fourth term is 30 .	Solution: Constant difference: $\boldsymbol{d}=\mathbf{1 0}$ $T_{4}=39$ $\begin{aligned} T_{n} & =a+(n-1) d \\ T_{4} & =a+(4-1) d \\ 39 & =a+3 d \\ 39 & =a+3(10) \\ 9 & =a \end{aligned}$ Hence the sequence is $9 ; 19 ; 29$
Example 4: In an arithmetic sequence the $2^{\text {nd }}$ term is 9 and the $5^{\text {th }}$ term is 21 . Determine a) The first three terms of the sequence. b) The $60^{\text {th }}$ term	$\begin{array}{cl} T_{2}=a+d=9 & \text { (1) } 2^{\text {nd }} \text { term } \\ T_{5}=a+4 d=21 & \text { (2) } 5^{\text {th }} \text { term } \\ 3 d=12 & \text { (2) }-(\mathbf{1}) \\ \boldsymbol{d}=\mathbf{4} \\ \therefore T_{2}=a+d=9 \\ a+4=9 \\ \boldsymbol{a}=\mathbf{5} \end{array}$ First three terms are 5; 9; 13; $T_{60}=a+59 d=5+59(4)=241$ Hence the $60^{\text {th }}$ term $=241$	Example 5: $2 p-3 ; 3 p-1 ; 5 p-2$ are the first three terms of an arithmetic sequence. a) Determine the value of p. b) The first three terms of the sequence. c) Determine the term equal to 2013	Solution: $\begin{aligned} & \text { a) } \boldsymbol{d =} T_{2}-T_{1}=T_{3}-T_{2} \\ & (3 p-1)-(2 p-3)=(5 p-2)-(3 p-1) \\ & 3 p-1-2 p+3=5 p-2-3 p+1 \\ & p+2=2 p-1 \\ & \boldsymbol{p}=\mathbf{3} \end{aligned}$ b) Replacing $p=3$ in the sequence we have the first three terms as $3 ; 8 ; 13$ c) $\begin{aligned} T_{n}=a+(n-1) d & =2013 \\ 3+(n-1)(5) & =2013 \\ 3+5 n-5 & =2013 \\ 5 n & =2013 \\ n & =403 \end{aligned}$
CAN YOU?	1) Given the following sequence: $3 ; 8$; Determine: a) The general term b) $T h e 20^{\text {th }}$ term c) Which term of the sequence is 2) In an arithmetic sequence, $T_{3}=-2$ term and the constant difference. 3) Find the number of terms in the arit $-5 ;-11 ;-17 ; \ldots ;-491$ 4) The first three terms of an arithmetic $x-8 ; x ; 2 x-5$. Determine a) The value of x. b) The general term. c) The value of the $115^{\text {th }}$ term.	18; ... to 223 $T_{8}=23$. Determine the first ic sequence uence is	Solutions: 1) a) $T_{n}=5 n-2$ b) 98 c) $n=45$ 2) $\begin{aligned} d & =5 \\ a & =-12 \end{aligned}$ 3) 82 4) a) 13 b) $T_{n}=8 n-3$ c) 917

SERIES: A series is created by adding the terms of a sequence.

$2 ; 5 ; 8 ; 11 ; 14 ;$
Arithmetic Sequence
$2+5+8+11+14$
Arithmetic Series

The Sum of a sequence is labelled as $\boldsymbol{S}_{\boldsymbol{n}}$ or the Greek symbol Σ
In the series $2+5+8+11+14+\ldots$

$$
\begin{array}{ll}
\boldsymbol{S}_{\mathbf{1}}=T_{1}=2 & \\
\boldsymbol{S}_{\mathbf{2}}=T_{1}+T_{2}= & \boldsymbol{S}_{\mathbf{1}}+\boldsymbol{T}_{\mathbf{2}}=2+5=7 \\
\boldsymbol{S}_{\mathbf{3}}=T_{1}+T_{2}+T_{3}= & \boldsymbol{S}_{\mathbf{2}}+\boldsymbol{T}_{\mathbf{3}}=2+5+8=15 \\
\boldsymbol{S}_{\mathbf{4}}=T_{1}+T_{2}+T_{3}+T_{4}=\boldsymbol{S}_{\mathbf{3}}+\boldsymbol{T}_{\mathbf{4}}=2+5+8+11=26 \\
\cdot & \\
\dot{\boldsymbol{S}}_{\boldsymbol{n}}=\boldsymbol{S}_{\boldsymbol{n} \mathbf{- 1}}+\boldsymbol{T}_{\boldsymbol{n}} & \boldsymbol{S}_{\boldsymbol{n}}=\boldsymbol{S}_{\boldsymbol{n} \mathbf{- 1}}+\boldsymbol{T}_{\boldsymbol{n}}
\end{array}
$$

Let $\boldsymbol{T}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}=\boldsymbol{l}$ the last term
Then

$$
\begin{aligned}
S_{n} & =a+(a+d)+(a+2 d)+\ldots+(l-d)+l \\
S_{n} & =l+(l-d)+(l-2 d)+\ldots+(a+d)+a \\
2 S_{n} & =(a+l)+(a+l)+(a+l)+\ldots+(a+l)+(a+l) \\
2 S_{n} & =n(a+l) \\
\boldsymbol{S}_{\boldsymbol{n}} & =\frac{a}{2}(\boldsymbol{a}+\boldsymbol{l}) \\
S_{n} & =\frac{a}{2}(a+\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d})=\frac{n}{2}[\mathbf{a} \boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}]
\end{aligned}
$$

Hence the sum of the first \boldsymbol{n} terms of an arithmetic series is given by the formule:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { or } \quad \frac{n}{2}[a+l] ; l=\text { last term }
$$

Example 6:

Consider the arithmetic series $(-1)+\left(\frac{-3}{2}\right)+(-2)+\cdots+(-16)$.
a) Determine the number of terms in this series.

Solution:

$$
\begin{aligned}
& T_{n}=a+(n-1) d \\
& T_{n}=-1+(n-1)\left(-\frac{1}{2}\right)=-16
\end{aligned}
$$

b) Calculate the sum of the series.

Solution:

$$
S_{n}=\frac{n}{2}[a+l]
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]=\sum_{k=1}^{n}[a+(k-1) d]
$$

Example 9: \quad Determine the value of $\sum_{n=1}^{5}(3 n+2)$
Solution:
Substitute $n=1$ in general term up to $n=5$.
$S_{n}=\sum_{\boldsymbol{n}=\mathbf{1}}^{\mathbf{1}}(\mathbf{3 n}+\mathbf{2})=(3.1+2)+(3.2+2)+(3.3+2)+(3.4+2)+(3.5+2)$

$$
=5+8+11+14+17
$$

$$
S_{5}=55
$$

Number of terms = 5 or Top - bottom+1 (5-1+1)

Example 10:
 Determine the value of $\sum_{\boldsymbol{k}=\mathbf{4}}^{7} \mathbf{2 k}$

Solution:
$\sum_{k=4}^{7} 2 \boldsymbol{k}=2(4)+2(5)+2(6)+2(7)$
$=8+10+12+14$
$S_{4}=44$
Number of terms $=4$ or Top - bottom +1 (7-4+1)

Example 11: Write the following series in sigma notation: $5+8+11+14+17$
Solution:

1) First calculate the general term for the series where $\boldsymbol{a}=\mathbf{5}$ and $\boldsymbol{d}=\mathbf{3}$.

Hence $T_{n}=a+(n-1) d$

$$
\begin{aligned}
& T_{n}=5+(n-1) 3 \\
& T_{n}=5+3 n-3 \\
& T_{n}=3 n+2
\end{aligned}
$$

2) Write the formula now in sigma notation

Bottom value is the first term which is equal to 5 .
$3 n+2=\mathbf{5}$
$3 n=3$
$n=1$

Top value is the last term which is equal to 17:

$$
3 n+2=17
$$

$$
3 n=15
$$

$$
n=5
$$

