

SUBJECT and GRADE	Mathematics Grade 12				
TERM 1	Week 1				
TOPIC	Sequences and Series				
AIMS OF LESSON	Recognise an arithmetic Sequences				
	Find the general arithmetic sequence				
	Answer question based on the arithmetic sequence like finding the position in a sequence.				
	• Find the sum of an arithmetic sequence				
	Sigma notation				
RESOURCES	Paper based resources	Digital resources			
	Textbook chapter about Sequences and Series	https://www.youtube.com/watch?v=WE3S6OAwc-s			
INTRODUCTION	In the previous grades you were introduced to numeric number patterns which is a sequence of numbers that follow a specific pattern. An example of a linear pattern (arithmetic sequence) is one where there is a constant difference between consecutive terms. In other words, the same number will be added to, or subtracted from each consecutive term				

A sequence is a ordered list of numbers or objects. A linear number pattern is also called an ARITHMETIC SEQUENCE

An Arithmetic sequence is a sequence where the difference between consecutive numbers terms remains constant i.e.

In the sequence: 5; 9; 13; 17; 21; ...

a =the first term $= T_1$

d = constant difference

$$d = T_2 - T_1 = T_3 - T_2$$

n = number of terms

We see that a = 5 and d = 4

$$T_1 = 5 =$$

$$T_2 = 9 = 5 + 4 = a + d$$

$$T_3 = 13 = 5 + 2(4) = a + 2d$$

$$T_4 = 17 = 5 + 3(4) = a + 3d$$

$$T_n = 5 + (n-1)(4) = a + (n-1)d$$

The General Term T_n

Is given by

$$T_n = a + (n-1)d$$

Example 1:

Given the sequence: 2; 5; 8; ...

- a) Determine the general term of the sequence.
- b) Use the general rule to determine the 40th term.
- c) Which term in the pattern will be equal to 2012.

Solution: Constant difference: $d = T_2 - T_1 = 5 - 2 = 3$ $a = T_1 = 2$

$$T_n = a + (n-1)d$$

= 2 + (n - 1)3
= 2 + 3n - 3

$$=3n-1 \qquad \qquad \therefore T_n=3n-1$$

$$T_n = 3n - 1$$

$$\therefore T_{40} = 3(40) - 1$$

$$T_{40} = 119$$

The **position** of the term is 40. Therefore, n = 40

$$T_n = 2012$$

$$T_n = 3n - 1 = 2012$$

$$3n = 2012 + 1$$

$$3n = 2013$$

n = 671

The **value** of the term is 2012. Therefore, n = 671

: term number 671 of the sequence is equal to 2012

Example 2:	Solution:	Example 3:	Solution:			
Find the number of terms in	d = -6 - (-2) = -4	Determine the first three	Constant difference: $d = 10$			
the arithmetic sequence	$T_n = a + (n-1)d$	terms of an arithmetic	$T_4 = 39$			
-2; -6; -10;; -150	$T_n = 0 + (n-1)u$ $T_n = -2 + (n-1)(-4)$	sequence if the constant	$T_n = a + (n-1)d$			
-2, -0, -10,, -130	$T_n = -2 + (n-1)(-4)$ $T_n = -4n + 2$	difference is 10 and the				
	$T_n = -4n + 2$ $T_n = -4n + 2 = -150$	fourth term is 30.	$T_4 = a + (4 - 1)d$ 39 = a + 3d			
	$n_n = -4n + 2 = -150$ $\therefore -4n = -152$	Tourin term is 50.				
	$\therefore -4n = -152$ $\therefore n = 38$		39 = a + 3(10) 9 = a			
	$\therefore n = 38$ There is 38 terms					
			Hence the sequence is 9; 19; 29			
	Constant difference: $d = 10$					
T. 1.4	$T_4 = 39$	D 1.5	0.1			
Example 4:	$T_2 = a + d = 9$ (1) 2^{nd} term	Example 5:	Solution:			
In an arithmetic sequence the	$T_5 = a + 4d = 21$ (2) 5^{th} term	2p-3; $3p-1$; $5p-2$	a) $d = T_2 - T_1 = T_3 - T_2$			
2^{nd} term is 9 and the 5^{th} term	3d = 12 (2) – (1)	are the first three terms of	(3p-1) - (2p-3) = (5p-2) - (3p-1)			
is 21. Determine	d = 4	an arithmetic sequence.	3p - 1 - 2p + 3 = 5p - 2 - 3p + 1			
	$\therefore T_2 = a + d = 9$		p+2=2p-1			
a) The first three terms	a + 4 = 9	a) Determine the value	p = 3			
of the sequence.	a = 5	of <i>p</i> .				
	First three terms are 5; 9; 13;		b) Replacing $p = 3$ in the sequence we			
		b) The first three terms	have the first three terms as 3; 8; 13			
	$T_{60} = a + 59d = 5 + 59(4) = 241$	of the sequence.				
b) The 60^{th} term			c) $T_n = a + (n-1)d = 2013$			
	Hence the 60^{th} term = 241 c) Determine the term		3 + (n-1)(5) = 2013			
		equal to 2013	3 + 5n - 5 = 2013			
			5n = 2013			
			n = 403			
CAN YOU?	1) Given the following sequence: 3; 8; 13;	18;	Solutions:			
	Determine:		1) a) $T_n = 5n - 2$			
	a) The general term		b) 98			
	b) The 20 th term	c) $n = 45$				
	c) Which term of the sequence is equal to 223					
	2) In an arithmetic sequence, $T_3 = -2$ and					
	term and the constant difference.	(2) d = 5				
	3) Find the number of terms in the arithmet	a = -12				
	-5; -11; -17;; -491					
	4) The first three terms of an arithmetic sec	3) 82				
	x-8; x ; $2x-5$. Determine	,				
	a) The value of x .	4) a) 13				
	b) The general term.		b) $T_n = 8n - 3$			
	c) The value of the 115 th term.	c) 917				
	-/ 1110 1110 1110 111111	-/ ~ - ·				

SERIES: A series is created by adding the terms of a sequence.

Arithmetic Sequence

$$2 + 5 + 8 + 11 + 14$$

Arithmetic Series

The **Sum of a sequence** is labelled as S_n or the Greek symbol Σ

In the series 2 + 5 + 8 + 11 + 14 + ...

$$S_1 - T_1 - Z$$

 $S_2 = T_1 + T_2 =$
 $S_3 = T_1 + T_2 + T_3 =$
 $S_1 + T_2 = 2 + 5 = 7$
 $S_2 + T_3 = 2 + 5 + 8 = 15$

$$S_1 + T_2 = 2 + 5 = 7$$

$$S_3 = T_1 + T_2 + T_3 =$$

$$G_2 + T_3 = 2 + 5 + 8 = 15$$

$$S_4 =$$

$$S_4 = T_1 + T_2 + T_3 + T_4 = S_3 + T_4 = 2 + 5 + 8 + 11 = 26$$

$$S_n = S_{n-1} + T_n$$

$$S_n = S_{n-1} + T_n \qquad S_n = S_{n-1} + T_n$$

Let $T_n = a + (n-1)d = l$ the last term

 $S_n = a + (a+d) + (a+2d) + \dots + (l-d) + l$ $S_n = l + (l-d) + (l-2d) + \dots + (a+d) + a$ $2S_n = (a+l) + (a+l) + (a+l) + \dots + (a+l) + (a+l)$ $2S_n = n(a+l)$ $S_n = \frac{a}{2} (a + l)$ $S_n = \frac{a}{2}(a+a+(n-1)d) = \frac{n}{2}[2a+(n-1)d]$

Hence the **sum of the first** *n* **terms** of an **arithmetic series** is given by the formule:

$$S_n = \frac{n}{2}[2a + (n-1)d]$$
 or $\frac{n}{2}[a+l]$; $l = last term$

Example 6:

Consider the arithmetic series $(-1) + \left(\frac{-3}{2}\right) + (-2) + \dots + (-16)$.

a) Determine the number of terms in this series.

Solution:

$$T_n = a + (n-1)d$$

$$T_n = -1 + (n-1)\left(-\frac{1}{2}\right) = -16$$

b) Calculate the sum of the series.

Solution:

$$S_n = \frac{n}{2}[a+l]$$

$$\therefore 1 - \frac{1}{2}n + \frac{1}{2} = -16$$

$$\therefore -\frac{1}{2}n = -16 + \frac{1}{2}$$

$$\therefore n = 31$$

$\therefore S_{31} = \frac{31}{2} [-1 + (-16)]$

$$\therefore S_{31} = -\frac{527}{2}$$

Example 7:

How many terms of the arithmetic series $1 + 4 + 7 + \cdots$ will add up to 145.

Solution:

$$a = 1$$
; $d = 3$; $n = ?$; $S_n = 145$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$145 = \frac{n}{2}[2(1) + (n-1)3]$$

$$290 = n(2 + 3n - 3)$$

$$290 = n(3n - 1)$$

$$0 = 3n^2 - n - 290$$

$$0 = (3n + 29)(n - 10)$$

$$n = -\frac{29}{3}$$
 or $n = 10$

$\therefore n = 10 \; ; \; n \in N$

Example 8:

Consider the arithmetic series $-4 - 1 + 2 + \cdots$ Calculate the smallest value of n for which $S_n > 300$

Solution:

$$a = -4$$
; $d = 3$; $n = ?$; let $S_n = 300$

$$S_n = \frac{n}{2} [2a + (n-1)d] = 300$$

$$\frac{n}{2} [2(-4) + (n-1)3] = 300$$

$$\therefore 3[3n - 11] = 600$$

$$\therefore 3n^2 - 11n - 600 = 0$$

$$n = \frac{-(11)\pm\sqrt{(-11)^2-4(3)(-600)}}{2(3)}$$

$$n = 16,09 \quad \text{or} \quad n = -12,43$$

$$n = 16,09$$
 or $n = -12,43$

 \therefore The smallest possible value of n is 17.

SIGMA NOTATION: The Greek letter Σ Sigma means the sum of .

$$\sum_{k=1}^{n} T_k = T_1 + T_2 + T_3 + \dots + T_n = S_n$$

n =number of terms:

$$n = top - bottom + 1$$

$$S_n = \frac{n}{2}[2a + (n-1)d] = \sum_{k=1}^n [a + (k-1)d]$$

Example 9: Determine the value of $\sum_{n=1}^{5} (3n+2)$

Solution:

Substitute n = 1 in general term up to n = 5.

$$S_n = \sum_{n=1}^{5} (3n + 2) = (3.1 + 2) + (3.2 + 2) + (3.3 + 2) + (3.4 + 2) + (3.5 + 2)$$

= 5 + 8 + 11 + 14 + 17

$$S_5 = 55$$
Number of terms = 5
or Top – bottom+1
(5-1+1)

Example 10:

Determine the value of $\sum_{k=4}^{7} 2k$

Solution:

$$\sum_{k=4}^{7} 2k = 2(4) + 2(5) + 2(6) + 2(7)$$

$$= 8 + 10 + 12 + 14$$

$$S_4 = 44$$
Number of terms = 4
or Top - bottom+1
$$(7-4+1)$$

Example 11: Write the following series in sigma notation: 5 + 8 + 11 + 14 + 17

Solution:

1) First calculate the general term for the series where a = 5 and d = 3.

Hence
$$T_n = a + (n-1)d$$

 $T_n = 5 + (n-1)3$
 $T_n = 5 + 3n - 3$
 $T_n = 3n + 2$

2) Write the formula now in sigma notation

 $\sum_{n=\cdots}^{\cdots} (3n+2)$

Bottom value is the first term which is equal to 5

$$3n + 2 = 5$$

 $3n = 3$
 $n = 1$

Top value is the last term which is equal to 17:

$$3n + 2 = 17$$
$$3n = 15$$
$$n = 5$$

$\sum_{n=1}^{5} (3n+2)$							
CAN YOU?	 Determine 5 + 12 + 19 + ··· + 54 How many terms of the arithmetic series 3 + 7 + 11 + ··· will add up to 210. Determine the value of the following ∑_{r=0}¹⁰(2r + 5) Write the following in sigma notation 7 + 10 + 13 + ··· + 25 					Answers: 1) 236 2) 10 3) 165 4) $\sum_{n=0}^{6} (7+3n)$	
ACTIVITIES/ASSESSMENT	Mind Action Ser	1es	Via Afrika		Classroom Mathematics		
	Exerise	Page	Exerise	Page	Exerise	Page	
	2. 4.	5 12	1. 3.	12 22	1.3 1.5 1.7	7 14 23	
CONSOLIDATION	Arithmetic Sequence T_1, T_2, T_3, T_4, T_n $T_n = a + (n-1)d \text{where } \boldsymbol{a} = T_1 \text{and} \boldsymbol{d} = T_2 - T_1 = T_3 - T_2$ Arithmetic Series $T_1 + T_2 + T_3 + T_4 + \dots + T_n = S_n$ $S_n = \frac{n}{2}[2a + (n-1)d] \text{or} S_n = \frac{n}{2}[a+l]$						
Sigma Notation $\sum_{k=1}^{n} T_k = S_n$							